Hướng dẫn Giải bài tập Toán 12 Bài 1 Số phức sẽ giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức đã học.
-
Bài tập 1 trang 133 SGK Giải tích 12
Tìm phần thực và phần ảo của số phức z, biết:
a) \(\small z = 1 - \pi i.\)
b) \(\small z = \sqrt{2} - 1\).
c) \(\small z = 2\sqrt{2}\).
d) \(\small z = -7i\).
-
Bài tập 2 trang 133 SGK Giải tích 12
Tìm các số thực x và y, bết:
a) \(\small (3x - 2) + (2y + 1)i = (x + 1) - (y - 5)i.\)
b) \(\small (1 - 2x) - i\sqrt{3} = \sqrt{5} + (1 - 3y)i.\)
c) \(\small (2x + y) + (2y - x)i = (x - 2y + 3) + (y + 2x + 1)i.\)
-
Bài tập 3 trang 134 SGK Giải tích 12
Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện:
a) Phần thực của z bằng -2.
b) Phần ảo của z bằng 3.
c) Phần thực của z thuộc khoảng (-1; 2).
d) Phần ảo của z thuộc đoạn [1; 3].
e) Phần thực và phần ảo của z đều thuộc đoạn [-2; 2].
-
Bài tập 4 trang 134 SGK Giải tích 12
Tính |z| với:
a)\(\small z=-2+i\sqrt{3}\); b) \(\small z=\sqrt{2}-3i\)
c) \(\small z = -5\); d) \(\small z=i\sqrt{3}\).
- VIDEOYOMEDIA
-
Bài tập 5 trang 134 SGK Giải tích 12
Trên mặt phẳng toạ độ, tìm tập hợp điểm biểu diễn các số phức z thoả mãn điều kiện:
a) |z| = 1.
b) |z| ≤ 1.
c) 1 < |z| ≤ 2.
d) |z| = 1 và phần ảo của z bằng 1.
-
Bài tập 6 trang 134 SGK Giải tích 12
Tìm , biết:
a) \(\small z = 1 - i\sqrt{2}\).
b) \(\small z = -\sqrt{2} + i\sqrt{3}\).
c) \(\small z = 5\).
d) \(\small z = 7i\).
-
Bài tập 4.1 trang 198 SBT Toán 12
Tìm các số thực
thỏa mãn :a) \(2x + 1 + (1 - 2y)i = 2 - x + (3y - 2)i\)
b) \(4x + 3 + (3y - 2)i = y + 1 + (x - 3)i\)
c) \(4x + 3 + (3y - 2)i = y + 1 + (x - 3)i\)
-
Bài tập 4.2 trang 198 SBT Toán 12
Cho hai số phức \(\alpha = a + bi,\beta = c + di\). Hãy tìm điều kiện của \(\beta\) trên mặt phẳng tọa độ :
để các điểm biểu diễn \(\alpha\) và
a) Đối xứng với nhau qua trục ;
b) Đối xứng với nhau qua trục ;
c) Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba;
d) Đối xứng với nhau qua gốc tọa độ. -
Bài tập 4.3 trang 199 SBT Toán 12
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức
thỏa mãn điều kiện:
a) Phần thực của bằng phần ảo của nó ;
b) Phần thực của là số đối của phần ảo của nó ;
c) Phần ảo của bằng hai lần phần thực của nó cộng với 1;
d) Modun của bằng 1, phần thực của không âm. -
Bài tập 4.4 trang 199 SBT Toán 12
Số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình 4.2 và hình 4.3?
-
Bài tập 4.5 trang 199 SBT Toán 12
Hãy biểu diễn các số phức
trên mặt phẳng tọa độ, biết \(|z| \le 2\) và:
a) Phần thực của không vượt quá phần ảo của nó;
b) Phần ảo của z lớn hơn 1;
c) Phần ảo của nhỏ hơn 1, phần thực của lớn hơn 1. -
Bài tập 4.6 trang 199 SBT Toán 12
Cho
. Mệnh đề nào sau đây sai ?A. Nếu z ∈ R thì \(z = \bar z\)
B. Nếu \(z = \bar z\) thì
C. Nếu
thìD. Nếu
thì -
Bài tập 4.7 trang 200 SBT Toán 12
Cho
\(z \in C\). Mệnh đề nào sau đây đúng ?A. Nếu \(z \in C\backslash R\) thì
là một số thuần ảo.B. Nếu
là một số thuần ảo thì \(z \in C\backslash R\)C. Nếu
là một số thuần ảo thìD. Nếu
là một số thuần ảo thì -
Bài tập 1 trang 189 SGK Toán 12 NC
Cho các số phức: 2+3i; 1+2i; 2–i
a) Biểu diễn các số đó trong mặt phẳng phức.
b) Viết số phức liên hợp của mỗi số đó và biểu diễn chúng trong mặt phẳng phức.
c) Viết số đối của mỗi số phức đó và biểu diễn chúng trong mặt phẳng
-
Bài tập 2 trang 189 SGK Toán 12 NC
Xác định phần thực và phần thực của các số sau:
\(\begin{array}{l}
a)i + \left( {2 - 4i} \right) - \left( {3 - 2i} \right)\\
b){(\sqrt {2 + 3i} )^2}\\
c)\left( {2 + 3i} \right)\left( {2 - 3i} \right)\\
d)i\left( {2 - i} \right)\left( {3 + i} \right)
\end{array}\) -
Bài tập 3 trang 189 SGK Toán 12 NC
Xác định các số phức biểu diễn bởi các đỉnh của một lục giác đều có tâm là gốc tọa độ O trong mặt phẳng phức, biết rằng một đỉnh biểu diễn số i.
-
Bài tập 4 trang 189 SGK Toán 12 NC
Thực hiện phép tính:
\(\frac{1}{{2 - 3i}};\frac{1}{{\frac{1}{2} - \frac{{\sqrt 3 }}{2}i}};\frac{{3 - 2i}}{i};\frac{{3 - 4i}}{{4 - i}}\)
-
Bài tập 5 trang 190 SGK Toán 12 NC
Cho \(z = \frac{{ - 1}}{2} + \frac{{\sqrt 3 }}{2}i.\)
Hãy tính \(\frac{1}{z};\overline z ;{z^2};{\left( {\overline z } \right)^3};1 + z + {z^2}\)
-
Bài tập 6 trang 190 SGK Toán 12 NC
Chứng minh rằng:
a) Phần thực của số phức z bằng \(\frac{1}{2}\left( {z + \bar z} \right)\) phần ảo của số phức z bằng \(\frac{1}{2}\left( {z - \bar z} \right)\)
b) Số phức z là số ảo khi và chỉ khi \(z = - \bar z;\)
c) Với mọi số phức z, z', ta có \(\overline {z + z'} = \bar z + \overline {z'} , \overline {zz'} = \bar z.\overline {z'} \) và nếu z ≠ 0 thì \(\frac{{\overline {z'} }}{{\bar z}} = \overline {\left( {\frac{{z'}}{z}} \right)} \)
-
Bài tập 7 trang 190 SGK Toán 12 NC
Chứng minh rằng với mọi số nguyên m > 0, ta có
\({i^{4m}} = 1;{i^{4m + 1}} = i;{i^{4m + 2}} = - 1;{i^{4m + 3}} = - i\)
-
Bài tập 8 trang 190 SGK Toán 12 NC
Chứng minh rằng
a) Nếu vecto \(\vec u\) của mạt phẳng phức biểu diễn số phức z thì độ dài của vectơ \(\vec u\) là |\(\vec u\)| = |z|, và từ đó nếu các điểm A1, A2 theo thứ tự biểu diễn các số phức z1; z2 thì \(\left| {\overrightarrow {{A_1}{A_2}} } \right| = |{z_2} - {z_1}|\)
b) Với mọi số phức z, z', ta có |zz′| = |z||z′| và khi z ≠ 0 thì \(\left| {\frac{{z'}}{z}} \right| = \frac{{|z'|}}{{|z|}}\)
c) Với mọi số phức z, z', ta có |z+z′| ≤ |z| + |z′|.
-
Bài tập 9 trang 190 SGK Toán 12 NC
Xác định tập hợp câc điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:
a) |z - i| = 1
b) \(\left| {\frac{{z - i}}{{z + i}}} \right| = 1\)
c) \(|z| = \mid \overline z - 3 + 4i\mid \)
-
Bài tập 10 trang 190 SGK Toán 12 NC
Chứng minh rằng với mọi số phức z ≠ 1, ta có:
\(1 + z + {z^2} + ... + {z^9} = \frac{{{z^{10}} - 1}}{{z - 1}}\)
-
Bài tập 11 trang 191 SGK Toán 12 NC
Hỏi mỗi số sau đây là số thực hay số ảo (z là số phức tùy ý cho trước sao cho biểu thức xác định)?
\({z^2} + {\left( {\bar z} \right)^2};\frac{{z - \bar z}}{{{z^3} + {{\left( {\bar z} \right)}^3}}};\frac{{{z^2} - {{\left( {\overline z } \right)}^2}}}{{1 + z.\overline z }}\)
-
Bài tập 12 trang 191 SGK Toán 12 NC
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:
a) z2 là số thực âm;
b) z2 là là số ảo;
c) \({z^2} = {\left( {\bar z} \right)^2}\)
d) \(\frac{1}{{z - i}}\) là số ảo
-
Bài tập 13 trang 191 SGK Toán 12 NC
Giải các phương trình sau (với ẩn z)
a) iz + 2 − i = 0
b) (2 + 3i)z = z − 1
c) \(\left( {2 - i} \right)\bar z - 4 = 0\)
d) \(\left( {iz - 1} \right)\left( {z + 3i} \right)\left( {\bar z - 2 + 3i} \right) = 0\)
e) z2 + 4 = 0
-
Bài tập 14 trang 191 SGK Toán 12 NC
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều kiện
a) Cho số phức z = x + yi. Khi z ≠ i, hãy tìm phần thực và phần ảo của số phức \(\frac{{z + i}}{{z - i}}\)
b) Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều kiện \(\frac{{z + i}}{{z - i}}\) là số thực dương.
-
Bài tập 15 trang 191 SGK Toán 12 NC
a) Trong mặt phẳng phức, cho ba điểm A, B, C không thẳng hàng theo thứ tự biểu diễn các số phức z1, z2, z3. Hỏi trọng tâm của tam giác ABC biểu diễn số phức nào?
b) Xét ba điểm A,B,C của mặt phẳng phức theo thứ tự biểu diễn ba số phức phân biệt z1, z2, z3 thỏa mãn |z1| = |z2| = |z3|
Chứng minh rằng A,B,C là ba đỉnh của một tam giác đều khi và chỉ khi z1 + z2 + z3 = 0
-
Bài tập 16 trang 191 SGK Toán 12 NC
Đố vui. Trong mặt phẳng phức cho các điểm: O (gốc tọa độ), A biểu diễn số 1, B biểu diễn số phức z không thực, A' biểu diễn số phức z′ ≠ 0 và B' biểu diễn số phức zz'.
Hai tam giác OAB, OA'B' có phải là hai tam giác dồng dạng không?