Giải bài 4 tr 134 sách GK Toán GT lớp 12
Tính |z| với:
a)\(\small z=-2+i\sqrt{3}\); b) \(\small z=\sqrt{2}-3i\)
c) \(\small z = -5\); d) \(\small z=i\sqrt{3}\).
Hướng dẫn giải chi tiết bài 4
Phương pháp:
Số phức \(z = a + bi\) (\(a,b\in\mathbb{R}\)). Môđun của số phức \(z\), kí hiệu \(\left | z \right |\) được xác định bởi công thức \(\left| z \right| = \sqrt {{a^2} + {b^2}} .\)
Lời giải:
Câu a:
\(|z| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( {\sqrt 3 } \right)}^2}} = \sqrt 7 \)
Câu b:
\(\left | z \right |= \sqrt{(\sqrt{2})^{2}+(-3)^{2}}=\sqrt {11}\) .
Câu c:
\(\left | z \right |=\sqrt{(-5)^{2}}=5\).
Câu d:
\(\left | z \right |=\sqrt{(\sqrt{3})^{2}}=\sqrt 3\).
-- Mod Toán 12 HỌC247
Bài tập SGK khác
Bài tập 2 trang 133 SGK Giải tích 12
Bài tập 3 trang 134 SGK Giải tích 12
Bài tập 5 trang 134 SGK Giải tích 12
Bài tập 6 trang 134 SGK Giải tích 12
Bài tập 4.1 trang 198 SBT Toán 12
Bài tập 4.2 trang 198 SBT Toán 12
Bài tập 4.3 trang 199 SBT Toán 12
Bài tập 4.4 trang 199 SBT Toán 12
Bài tập 4.5 trang 199 SBT Toán 12
Bài tập 4.6 trang 199 SBT Toán 12
Bài tập 4.7 trang 200 SBT Toán 12
Bài tập 1 trang 189 SGK Toán 12 NC
Bài tập 2 trang 189 SGK Toán 12 NC
Bài tập 3 trang 189 SGK Toán 12 NC
Bài tập 4 trang 189 SGK Toán 12 NC
Bài tập 5 trang 190 SGK Toán 12 NC
Bài tập 6 trang 190 SGK Toán 12 NC
Bài tập 7 trang 190 SGK Toán 12 NC
Bài tập 8 trang 190 SGK Toán 12 NC
Bài tập 9 trang 190 SGK Toán 12 NC
Bài tập 10 trang 190 SGK Toán 12 NC
Bài tập 11 trang 191 SGK Toán 12 NC
Bài tập 12 trang 191 SGK Toán 12 NC
Bài tập 13 trang 191 SGK Toán 12 NC
Bài tập 14 trang 191 SGK Toán 12 NC
-
Hãy viết dạng lượng giác của số phức sau: \(1 - i\tan {\pi \over 5}\).
Theo dõi (0) 1 Trả lời -
Hãy viết dạng lượng giác của số phức z và của các căn bậc hai của z cho trường hợp sau: \(\left| z \right| = {1 \over 3}\) và một acgumen của \({{\overline z } \over {1 + i}}\) là \( - {{3\pi } \over 4}.\)
bởi Sam sung 07/05/2021
Hãy viết dạng lượng giác của số phức z và của các căn bậc hai của z cho trường hợp sau: \(\left| z \right| = {1 \over 3}\) và một acgumen của \({{\overline z } \over {1 + i}}\) là \( - {{3\pi } \over 4}.\)
Theo dõi (0) 1 Trả lời -
Hãy viết dạng lượng giác của số phức z và của các căn bậc hai của z cho trường hợp sau: \(\left| z \right| = 3\) và một acgumen của iz là \({{5\pi } \over 4};\)
bởi Nguyễn Thủy Tiên 07/05/2021
Hãy viết dạng lượng giác của số phức z và của các căn bậc hai của z cho trường hợp sau: \(\left| z \right| = 3\) và một acgumen của iz là \({{5\pi } \over 4};\)
Theo dõi (0) 1 Trả lời -
Cho số phức \({\rm{w}} = - {1 \over 2}\left( {1 + i\sqrt 3 } \right)\). Tìm các số nguyên dương n để \({{\rm{w}}^n}\) là số thực. Hỏi có chăng một số nguyên dương m để \({{\rm{w}}^m}\) là số ảo?
bởi Nguyen Dat 07/05/2021
Cho số phức \({\rm{w}} = - {1 \over 2}\left( {1 + i\sqrt 3 } \right)\). Tìm các số nguyên dương n để \({{\rm{w}}^n}\) là số thực. Hỏi có chăng một số nguyên dương m để \({{\rm{w}}^m}\) là số ảo?
Theo dõi (0) 1 Trả lời -
ADMICRO
Tính \({\left( {\sqrt 3 - i} \right)^6};{\left( {{i \over {1 + i}}} \right)^{2004}};{\left( {{{5 + 3i\sqrt 3 } \over {1 - 2i\sqrt 3 }}} \right)^{21}}\).
bởi Anh Nguyễn 07/05/2021
Tính \({\left( {\sqrt 3 - i} \right)^6};{\left( {{i \over {1 + i}}} \right)^{2004}};{\left( {{{5 + 3i\sqrt 3 } \over {1 - 2i\sqrt 3 }}} \right)^{21}}\).
Theo dõi (0) 1 Trả lời -
Sử dụng công thức Moa-vrơ để tính \(\sin 4\varphi \) và \(\cos 4\varphi \) theo các lũy thừa của \(\sin \varphi \) và \(\cos \varphi \).
bởi nguyen bao anh 07/05/2021
Sử dụng công thức Moa-vrơ để tính \(\sin 4\varphi \) và \(\cos 4\varphi \) theo các lũy thừa của \(\sin \varphi \) và \(\cos \varphi \).
Theo dõi (0) 1 Trả lời -
Gọi M, M’ là các điểm trong mặt phẳng phức theo thứ tự biểu diễn các số \(z = 3 + i;\) \(z' = \left( {3 - \sqrt 3 } \right) + \left( {1 + 3\sqrt 3 } \right)i.\) Tính \({{z'} \over z};\)
bởi Hong Van 07/05/2021
Gọi M, M’ là các điểm trong mặt phẳng phức theo thứ tự biểu diễn các số \(z = 3 + i;\) \(z' = \left( {3 - \sqrt 3 } \right) + \left( {1 + 3\sqrt 3 } \right)i.\) Tính \({{z'} \over z};\)
Theo dõi (0) 1 Trả lời -
Dùng công thức khai triển nhị thức Niu-tơn \({\left( {1 + i} \right)^{19}}\) và công thức Moa-vrơ để tính \(C_{19}^0 - C_{19}^2 + C_{19}^4 - ... + C_{19}^{16} - C_{19}^{18}.\)
bởi Phan Quân 07/05/2021
Dùng công thức khai triển nhị thức Niu-tơn \({\left( {1 + i} \right)^{19}}\) và công thức Moa-vrơ để tính \(C_{19}^0 - C_{19}^2 + C_{19}^4 - ... + C_{19}^{16} - C_{19}^{18}.\)
Theo dõi (0) 1 Trả lời -
Viết số phức sau dưới dạng lượng giác: \(\eqalign{z = \sin \varphi + i\cos \varphi \,(\varphi \in\mathbb R)}\)
bởi hà trang 07/05/2021
Viết số phức sau dưới dạng lượng giác: \(\eqalign{z = \sin \varphi + i\cos \varphi \,(\varphi \in\mathbb R)}\)
Theo dõi (0) 1 Trả lời -
Viết số phức sau dưới dạng lượng giác: \(\eqalign{{1 \over {2 + 2i}}} \)
Theo dõi (0) 1 Trả lời