OFF
OFF
ADMICRO
22AMBIENT
Banner-Video
VIDEO

Bài tập 6.21 trang 186 SBT Toán 10

Giải bài 6.21 tr 186 SBT Toán 10

Chứng minh rằng với mọi α làm cho biểu thức \(\frac{{\sin \alpha  + \tan \alpha }}{{\cos \alpha  + \cot \alpha }}\) có nghĩa, biểu thức đó không thể là một số âm.

ADSENSE
QUẢNG CÁO

Hướng dẫn giải chi tiết

Ta có:

\(\frac{{\sin \alpha  + \tan \alpha }}{{\cos \alpha  + \cot \alpha }} = \frac{{\sin \alpha \left( {1 + \frac{1}{{\cos \alpha }}} \right)}}{{\cos \alpha \left( {1 + \frac{1}{{\sin \alpha }}} \right)}} = \frac{{{{\sin }^2}\alpha \left( {1 + \cos \alpha } \right)}}{{{{\cos }^2}\alpha \left( {1 + \sin \alpha } \right)}}\)

Vì 1 + cosα ≥ 0 và 1 + sinα ≥ 0 cho nên biểu thức đã cho không thể có giá trị là một số âm.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 6.21 trang 186 SBT Toán 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

MGID
ON