OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Xác định điều kiện của tham số \(m\) để đường cong \(y = {x^4} - 4m{x^2} + 3m - 2\) có ba điểm cực trị \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) phân biệt sao cho tam giác ABC nhận \(G\left( {0; - \dfrac{5}{3}} \right)\) làm trọng tâm?

A. \(m = 1\)                B. \(m = 1\) hoặc \(m = 0,125\)          

C. \(m = 0,125\)          D. \(m = 8\)

  bởi Sasu ka 11/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • + TXĐ: \(D = \mathbb{R}\).

    + \(y' = 4{x^3} - 8mx = 0 \Leftrightarrow 4x\left( {{x^2} - 2m} \right) = 0\).

    + Để hàm số có 3 điểm cực trị thì phương trình \(y' = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow 2m > 0 \Leftrightarrow m > 0\).

    + Tọa độ các điểm cực trị của đồ thị hàm số là: \(A\left( {0;3m - 2} \right)\), \(B\left( { - \sqrt {2m} ; - 4{m^2} + 3m - 2} \right)\); \(C\left( {\sqrt {2m} ; - 4{m^2} + 3m - 2} \right)\)

    + Tam giác ABC nhận \(G\left( {0; - \dfrac{5}{3}} \right)\) làm trọng tâm.

    \(\begin{array}{*{20}{l}}{ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x_A} + {x_B} + {x_C} = 3{x_G}}\\{{y_A} + {y_B} + {y_C} = 3{y_G}}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 = 0{\mkern 1mu} {\mkern 1mu} \left( {luon{\mkern 1mu} {\mkern 1mu} dung} \right)}\\{3m - 2 - 4{m^2} + 3m - 2 - 4{m^2} + 3m - 2 = {\rm{\;}} - 5}\end{array}} \right.}\\{ \Leftrightarrow {\rm{\;}} - 8{m^2} + 9m - 1 = 0}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 1{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{m = \dfrac{1}{8}{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\end{array}} \right.}\end{array}\)

    Vậy \(m = 1\) hoặc \(m = \dfrac{1}{8} = 0,125\).

    Chọn B.  

      bởi hồng trang 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF