OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trên mặt phẳng \(Oxy\), hãy tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(| z – i| = |(1 + i)z|\).

Trên mặt phẳng \(Oxy\), hãy tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(| z – i| = |(1 + i)z|\).

  bởi thanh duy 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \(z = x + yi\).

    Ta có:

    \(|z – i| = |(1 + i)z|\) \( \Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {\left( {1 + i} \right)\left( {x + yi} \right)} \right|\) \( \Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {\left( {x - y} \right) + \left( {x + y} \right)i} \right|\)\( \Leftrightarrow \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  = \sqrt {{{\left( {x - y} \right)}^2} + {{\left( {x + y} \right)}^2}} \) \( \Leftrightarrow {x^2} + {y^2} - 2y + 1 = 2{x^2} + 2{y^2}\)

    \( \Leftrightarrow {x^2} + {y^2} + 2y = 1\) \( \Leftrightarrow {x^2} + {\left( {y\; + 1} \right)^2} = 2\).

    Các điểm biểu diễn \(z\) nằm trên đường tròn tâm \(I(0; -1)\) bán kính \(\sqrt 2 \).

      bởi Lê Nhật Minh 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF