OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tính tích phân I= tích phân từ 0 đến 1 của x^2(1+x căn(1-x^2))dx

Tính tích phân: \(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx\)

Help me!!!khocroi

  bởi An Nhiên 26/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Chắc bạn học lớp 12 nhỉ???hihi

    Đ/A:

    \(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx=\int\limits^1_0x^2dx+\int\limits^1_0x^3\sqrt{1-x^2}dx\)

    \(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}\)|\(_0^1=\frac{1}{3}\)

    \(I_2=\int\limits^1_0x^3\sqrt{1-x^2}dx\)

    Đặt \(t=\sqrt{1-x^2}\Rightarrow x^2=1-t^2\Rightarrow xdx\Rightarrow tdt\)

    Đổi cận: \(x=0\Rightarrow t=1;x=1\Rightarrow t=0\)

    \(\Rightarrow I_2=-\int\limits^1_0\left(1-t^2\right)t^2dt=\int\limits^1_0\left(t^2-t^4\right)dt=\left(\frac{t^3}{3}-\frac{t^5}{5}\right)\)|\(_0^1=\frac{2}{15}\)

    Vậy \(I=I_1+I_2=\frac{7}{5}\)

    Đặt \(u=x\Rightarrow du=dx;dv=c^{2x}\) chọn \(v=\frac{1}{2}c^{2x}\)

    \(\Rightarrow\int\limits^1_0xc^{2x}dx=\frac{x}{2}c^{2x}\)|\(_0^1-\frac{1}{2}\int\limits^1_0c^{2x}dx=\frac{c^2}{2}-\frac{1}{4}c^{2x}\)|\(_0^1=\frac{c^2+1}{4}\)

    Vậy \(I=\frac{3c^2+7}{2}\)

      bởi Nguyễn Thành 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF