OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tính thể tích tứ diện S.ABC có cách cạnh SA,SB,SC đôi một vuông góc

cho tứ diện S.ABC có cách cạnh SA,SB,SC đôi một vuông góc với nhau và AB=5,BC=6,CA=7 tính V

  bởi Đào Lê Hương Quỳnh 24/10/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Lời giải:

    \(SA\perp SB\perp SC\) theo tính đôi một nên áp dụng định lý Pitago:

    \(\left\{\begin{matrix} SA^2+SB^2=AB^2=25\\ SB^2+SC^2=BC^2=36\\ SC^2+SA^2=AC^2=49\end{matrix}\right.\)

    \(\Rightarrow \left\{\begin{matrix} SA^2=19\\ SB^2=6\\ SC^2=30\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} SA=\sqrt{19}\\ SB=\sqrt{6}\\ SC=\sqrt{30}\end{matrix}\right.\)

    Vì $SA,SB,SC$ đôi một vuông góc nên:

    \(V=\frac{SA.SB.SC}{6}=\frac{\sqrt{19}.\sqrt{6}.\sqrt{30}}{6}=\sqrt{95}\)

      bởi Nguyễn CaoKiệt 24/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF