OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tính thể tích khối lăng trụ ABCD.A 'B'C'D ' và khoảng cách giữa hai đường thẳng AB' và BD theo a

Hôm nay thầy em giao bài này về nhà mà em không có biết làm, mn giúp em vs!

Cho hình lăng trụ đứng ABCD.A 'B'C'D ' có đáy là hình thoi cạnh a, \(\widehat{BAD}=120^0\) và \(AC' =a\sqrt{5}\). Tính thể tích khối lăng trụ ABCD.A 'B'C'D ' và khoảng cách giữa hai đường thẳng AB' và BD theo a.

  bởi Nguyễn Trà Long 08/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)


  • Gọi O là tâm hình thoi ABCD.
    Do hình thoi ABCD có \(\widehat{BAD}=120^0\)
    \(\Rightarrow \Delta ABC,\Delta ACD\) đều
    \(\Rightarrow AC=a\)
    Ta có: \(S_{ABCD}=2S_{\Delta ABC}=\frac{a^2\sqrt{3}}{2}\)
    Mà ABCD.A 'B'C'D ' là lăng trụ đứng
    \(\Rightarrow \Delta ACC'\) vuông tại \(C\Rightarrow CC'=\sqrt{AC'^2-AC^2}=\sqrt{5a^2-a^2}=2a\)
    Vậy \(V_{ABCD.A'B'C'D'}=CC'.S_{ABCD}=2a.\frac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)
    Tứ giác AB'C'D là hình bình hành \(\Rightarrow AB'//C'D\Rightarrow AB'//(BC'D)\)
    \(\Rightarrow d(AB',BD) =d(AB',(BC'D))= d(A,(BC'D)) =d(C,(BC'D))\)
    Vì \(BD \perp AC,BD \perpCC'\Rightarrow BD\perp (OCC')\Rightarrow (BC'D)\perp (OCC').\)
    Trong(OCC'), kẻ CH \(\perp\) OC' (H \(\in\) OC').
    \(CH \perp (BC'D)\Rightarrow d(C,(BC'D)) =CH\)
    \(\Delta OCC'\) vuông tại \(C\Rightarrow \frac{1}{CH^2}= \frac{1}{CO^2}+ \frac{1}{CC'^2}= \frac{4}{a^2}+ \frac{1}{4a^2}\Rightarrow CH=\frac{2a}{\sqrt{17}}\)
    Vậy d(AB',BD) = \(\frac{2a}{\sqrt{17}}\)

      bởi May May 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF