OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số cho sau: \(y = {{\sqrt {{x^2} + x} } \over {x - 1}}\)

  bởi Trieu Tien 18/10/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {{x\sqrt {1 + {1 \over x}} } \over {x - 1}} \)

    \(= \mathop {\lim }\limits_{x \to  + \infty } {{\sqrt {1 + {1 \over x}} } \over {1 - {1 \over x}}} = 1\)

    \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 + {1 \over x}} } \over {x - 1}} \)

    \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - \sqrt {1 + {1 \over x}} } \over {1 - {1 \over x}}} =  - 1\)                           

    Nên đường thẳng y = 1 là tiệm cận ngang của đồ thị (khi \(x \to  + \infty \)) và đường thẳng y = -1 là tiệm cận ngang của đồ thị (khi \(x \to  - \infty \)).

    \(\begin{array}{l}
    \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^2} + x} }}{{x - 1}} = + \infty \\
    \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\sqrt {{x^2} + x} }}{{x - 1}} = - \infty
    \end{array}\)

    Nên đường thẳng \(x=1\) là TCĐ của ĐTHS.

      bởi Nguyễn Lệ Diễm 19/10/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF