OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm tập hợp nghiệm của phương trình sau \(\displaystyle \frac{{{{\log }_2}x}}{{{{\log }_4}2x}} = \frac{{{{\log }_8}4x}}{{{{\log }_{16}}8x}}\).

A. \(\displaystyle  \left\{ 2 \right\}\)                     

B. \(\displaystyle  \left\{ {\frac{1}{4}} \right\}\)   

C. \(\displaystyle  \left\{ {2;\frac{1}{4}} \right\}\)             

D. \(\displaystyle  \left\{ {2;\frac{1}{{16}}} \right\}\)  

  bởi Khánh An 03/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • ĐK: \(\displaystyle  \left\{ \begin{array}{l}x > 0\\{\log _4}2x \ne 0\\{\log _{16}}8x \ne 0\end{array} \right.\).

    Khi đó, phương trình \(\displaystyle  \frac{{{{\log }_2}x}}{{{{\log }_4}2x}} = \frac{{{{\log }_8}4x}}{{{{\log }_{16}}8x}}\)\(\displaystyle   \Leftrightarrow {\log _2}x.{\log _{16}}8x = {\log _4}2x.{\log _8}4x\)

    \(\displaystyle   \Leftrightarrow {\log _2}x.\frac{1}{4}{\log _2}8x\) \(\displaystyle   = \frac{1}{2}{\log _2}2x.\frac{1}{3}{\log _2}4x\)

    \(\begin{array}{l}
    \Leftrightarrow \frac{{{{\log }_2}x.{{\log }_2}8x}}{4} = \frac{{{{\log }_2}2x.{{\log }_2}4x}}{6}\\
    \Leftrightarrow 6{\log _2}x.{\log _2}8x = 4{\log _2}2x.{\log _2}4x\\
    \Leftrightarrow 3{\log _2}x.{\log _2}8x = 2{\log _2}2x.{\log _2}4x\\
    \Leftrightarrow 3{\log _2}x.\left( {{{\log }_2}8 + {{\log }_2}x} \right)\\
    = 2\left( {{{\log }_2}2 + {{\log }_2}x} \right)\left( {{{\log }_2}4 + {{\log }_2}x} \right)
    \end{array}\)

    \(\displaystyle   \Leftrightarrow 3{\log _2}x.\left( {3 + {{\log }_2}x} \right)\)\(\displaystyle   = 2\left( {1 + {{\log }_2}x} \right)\left( {2 + {{\log }_2}x} \right)\)

    \(\displaystyle   \Leftrightarrow 9{\log _2}x + 3\log _2^2x\) \(\displaystyle   = 2\left( {2 + 3{{\log }_2}x + \log _2^2x} \right)\)

    \(\displaystyle   \Leftrightarrow \log _2^2x + 3{\log _2}x - 4 = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 1\\{\log _2}x =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x = \frac{1}{{16}}\end{array} \right.\left( {TM} \right)\)

    Vậy tập nghiệm \(\displaystyle  \left\{ {2;\frac{1}{{16}}} \right\}\).

    Chọn D.

      bởi Anh Nguyễn 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF