OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm tập hợp điểm biểu diễn số phức z thoả |z-4i|+|z+4i|=10

tìm tập hợp điểm biểu diễn số phức Z thoả mãn điều kiện

| Z - 4i | + | Z + 4i | = 10 

  bởi hà trang 27/09/2018
ADMICRO/lession_isads=0

Câu trả lời (1)

  • gọi z=x+yi ( x, y \(\in\) R)

    ta có:\(\sqrt{\left(x^2+\left(y-4\right)^2\right)}+\sqrt{x^2+\left(y+4\right)^2}=10\)

    <=> \(\sqrt{\left(x^2+\left(y-4\right)^2\right)}=10-\sqrt{x^2+\left(y+4\right)^2}\)

    <=> \(x^2+\left(y-4\right)^2=100-20\sqrt{x^2+\left(y+4\right)^2}+x^2+\left(y+4\right)^2\)

    <=> \(5\sqrt{\left(x^2+\left(y+4\right)^2\right)}=25+4y\)

    <=> \(\begin{cases}y\ge\frac{-25}{4}\\25\left(x^2+\left(y+4\right)^2\right)=625+200y+16y^2\end{cases}\)

    <=> \(\begin{cases}y\ge\frac{-25}{4}\\25x^2+25\left(y^2+8y+16\right)=625+200y+16y^2\end{cases}\)

    <=>\(\begin{cases}y\ge\frac{-25}{4}\\9y^2+25x^2=225\end{cases}\)

    <=>\(\begin{cases}y\ge\frac{-25}{4}\\\frac{y^2}{25}+\frac{x^2}{9}=1\end{cases}\)

    ta thấy phương trình trên là một phương trình elip.

    Kết luận: Vậy tập hợp điểm biểu diễn số phức Z thỏa mãn điều kiện trên là một hình elip có phương trình:

    \(\frac{y^2}{25}+\frac{x^2}{9}=1\)

    đúng thì tick cho mình biết nhé!!!haha

     

      bởi Nhân Vật Dấu Tên 27/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF