OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm số điểm cực trị của hàm số \(f\left( x \right) = \int\limits_{2x}^{{x^2}} {\dfrac{{2tdt}}{{1 + {t^2}}}} \)

  bởi Anh Tuyet 06/05/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(\begin{array}{l}f\left( x \right) = \int\limits_{2x}^{{x^2}} {\dfrac{{2tdt}}{{{t^2} + 1}}}  = \int\limits_{2x}^{{x^2}} {\dfrac{{d\left( {{t^2} + 1} \right)}}{{{t^2} + 1}}} \\ = \left. {\ln \left( {{t^2} + 1} \right)} \right|_{2x}^{{x^2}} = \ln \left( {{x^4} + 1} \right) - \ln \left( {4{x^2} + 1} \right)\\f'\left( x \right) = \dfrac{{4{x^3}}}{{{x^4} + 1}} - \dfrac{{8x}}{{4{x^2} + 1}} = \dfrac{{4{x^3}\left( {4{x^2} + 1} \right) - 8x\left( {{x^4} + 1} \right)}}{{\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right)}}\\ = \dfrac{{8{x^5} + 4{x^3} - 8x}}{{\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} = \dfrac{{4x\left( {2{x^4} + {x^2} - 2} \right)}}{{\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right)}}\end{array}\)

    Nhận xét:

    Phương trình \(2{x^4} + {x^2} - 2 = 0\) có 2 nghiệm phân biệt \( \pm \dfrac{{\sqrt { - 1 + \sqrt {17} } }}{2}\) và \(2{x^4} + {x^2} - 2\) đổi dấu tại 2 điểm này.

    \(4x\) đổi dấu tại \(x = 0\)

    \(\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right) > 0,\,\forall x\)

    \( \Rightarrow f'\left( x \right)\) đổi dấu tại 3 điểm là \(x =  \pm \dfrac{{\sqrt { - 1 + \sqrt {17} } }}{2}\) và \(x = 0\)

    \( \Rightarrow \) Số điểm cực trị của hàm số \(f\left( x \right) = \int\limits_{2x}^{{x^2}} {\dfrac{{2tdt}}{{1 + {t^2}}}} \) là 3.

      bởi Ngọc Trinh 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF