OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm nguyên hàm của e^(3x)/(e^2+2)

Tìm các nguyên hàm sau đây bằng các phép hữu tỉ hóa

a) \(I_1=\int\frac{e^{3x}}{e^2+2}dx\) 

b) \(I_2=\int\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}dx\)

c) \(I_1=\int\frac{1}{x^2-1}\left[\sqrt[3]{\left(\frac{x+1}{x-1}\right)^5}\right]dx\)

  bởi ngọc trang 27/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)"  ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)

    Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)

                    \(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)

     

    b) Hàm dưới dấu nguyên hàm

    \(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)

    q=BCNN(2;3)=6

    Ta thực hiện phép hữu tỉ hóa theo :

    "Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"

    => \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)

    Khi đó nguyên hàm đã cho trở thành :

    \(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)

         \(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)

         \(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)

    c) Hàm dưới dấu nguyên hàm có dạng :

    \(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)

    q=BCNN (3;6)=6

    Ta thực hiện phép hữu tỉ hóa được

    \(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)

    Khi đó hàm dưới dấu nguyên hàm trở thành

    \(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)

    Do đó :

    \(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)

        \(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)

      bởi Nguyễn Thị Hồng Minh 27/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF