OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để đường thẳng y=mx + m cắt đồ thị hàm số tại hai điểm có hoành độ x1,x2 sao cho |x1-x2|=2

Cho hàm số y=(x+2)/(x+1). Tìm m để đường thẳng y=mx + m cắt đồ thị hàm số tại hai điểm có hoành độ x1,x2 sao cho |x1-x2|=2

  bởi Nguyễn Kim Đức 30/08/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • + Xét \(m = 0\) không thỏa yêu cầu bài toán.

    + Xét \(m \ne 0,\) ta có:

     Phương trình hoành độ giao điểm \(\frac{{x + 2}}{{x + 1}} = mx + m\)

    \(\begin{array}{l} \Rightarrow x + 2 = \left( {mx + m} \right)\left( {x + 1} \right)\\ \Leftrightarrow x + 2 = m{x^2} + 2mx + m\\ \Leftrightarrow m{x^2} + (2m - 1)x + m - 2 = 0\,\,(*)\end{array}\)

    Đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt khác -1.

    Hay: \(\left\{ \begin{array}{l}m - 2m + 1 + m - 2 \ne 0\\\Delta  = {(2m - 1)^2} - 4m(m - 2) > 0\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l} - 1 \ne 0\\4m + 1 > 0\end{array} \right. \Leftrightarrow m >  - \frac{1}{4}\)  (**)

    Khi đó đồ thị hàm số cắt đường thẳng tại hai điểm có hoàng độ \({x_1},{x_2}\) thỏa:

    \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{1 - 2m}}{m}\\{x_1}{x_1} = \frac{{m - 2}}{m}\end{array} \right.\)

    \(\begin{array}{l}\left| {{x_1} - {x_2}} \right| = 2 \Rightarrow {\left( {{x_1} - {x_2}} \right)^2} = 4\\ \Leftrightarrow {x_1}^2 + {x_2}^2 - 2{x_1}{x_2} = 4\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 4\end{array}\)

    Thay (**) vào tính tiếp ra m cần tìm.

     

      bởi hoàng duy 31/08/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF