OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để bất phương trình 2^sin^2(x) + 3^cos^2(x) >= m.3^sin^2(x) có nghiệm

Với giá trị nào của tham số m thì bất phương trình 2sin^2(x) + 3cos^2(x) \(^{}\)\(^{}\)\(^{}\)>= m.3sin^2(x) có nghiệm ?

 

  bởi Trung Minh 31/10/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \({\sin ^2}x = \alpha ,\,\alpha \in \left[ {0;1} \right]\). Khi đó bất phương trình đã cho tương đương với

    \({2^\alpha } + {3^{1 - \alpha }} \ge a{.3^\alpha } \Rightarrow a \le \frac{{{2^\alpha } + {3^{1 - \alpha }}}}{{{3^\alpha }}}\,\left( 1 \right)\)

    Xét phương trình \(f\left( \alpha \right) = \frac{{{2^\alpha } + {3^{1 - \alpha }}}}{{{3^\alpha }}} = {\left( {\frac{2}{3}} \right)^\alpha } + {3^{1 - 2\alpha }}\) với \(\alpha \in \left[ {0;1} \right]\)

    Ta có:  \(f'(\alpha ) = {\left( {\frac{2}{3}} \right)^\alpha }.\ln \frac{2}{3} - {2.3^{1 - 2\alpha }}.\ln 3 < 0,\forall \alpha \in \left[ {0;1} \right]\)

    Vậy hàm số trên luôn nghịch biến trên  \(\left[ {0;1} \right]\)

    Nên \(\mathop {\max }\limits_{\alpha \in \left[ {0;1} \right]} f\left( \alpha \right) = f\left( 0 \right) = 4\)

    Vậy điều kiện để phương trình đã cho có ít nhất một nghiệm thực là: \(a \le \mathop {\max }\limits_{a \in \left[ {0;1} \right]} f\left( \alpha \right) = 4\)

      bởi thu thủy 01/11/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF