OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm điều kiện cần và đủ để hs y= căn(x^2-4x+m-3) xác định với mọi x

các bạn giúp mình câu này với

điều kiện cần và đủ để y= \(\sqrt{x^2-4\text{x}+m-3}\) xác định với mọi x \(\in\) R

  bởi cuc trang 26/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Để hàm \(y=\sqrt{x^2-4x+m-3}\) xác định với mọi \(x\in\mathbb{R}\) thì điều kiện cần và đủ là \(x^2-4x+m-3\geq 0\forall x\in\mathbb{R}\)

    \(\Leftrightarrow m\geq -x^2+4x+3\forall x\in\mathbb{R}\) hay \(m\geq (-x^2+4x+3)_{\max}=f(x)_{\max}\)

    Ta có \(f'(x)=-2x+4=0\Leftrightarrow x=2\)

    \(\Rightarrow f(x)_{\max}=f(2)=7\). Do đó chỉ cần $m\geq 7$ thì hàm số luôn xác định với mọi $x\in\mathbb{R}$

      bởi Nguyễn Mạnh Hưng 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF