OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm điểm M trên mp (P):3x-4y+z-1=0 sao cho MA+MB nhỏ nhất

1)cho d: \(\frac{x}{2}=\frac{y-1}{-1}=\frac{z}{1}\) và d' : \(\frac{x-1}{1}=\frac{y}{2}=\frac{z+2}{1}\). viết PT mặt phẳng (P) vuông góc với d và cắt Oz tại A, d' tại B sao cho AB nhỏ nhất

2) cho(P) : 3x-4y+z-1=0 và hai điểm A(1;-1;2), B(3;0;1). tìm M trên (P) sao cho MA+MB nhỏ nhất

 

  bởi Naru to 11/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Câu 2:

    Thay toạ độ A và B vào (P) có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên A,B cùng phía so với (P)

    Lấy A' đối xứng với A qua (P) \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)

    Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng

    Biểu thị (d) là đường thẳng chứa đoạn AA'.

    Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)

    Kết hợp với \(A\in (d)\) nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)

    Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)

    Lại có H là trung điểm của AA' nên tọa độ của A' là

    \(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)

    Khi đó ta dễ dàng viết được PTĐT chứa A'B là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)

    Tọa độ của M là nghiệm của hệ

    \(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)

    .

      bởi Phạm Hương 11/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF