OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm a, b,c để đt y=3 cắt (P): y=ax^2+bx+c tại 2 điểm có hoành độ là -1 và 3

Bài 1: Cho hàm số y = \(ax^2+bx+c\) (P). Tính a,b,c biết:

Đường thẳng y = 3 cắt (P) tại hai điểm có hoành độ là -1 và 3; hàm số đạt GTNN bằng -1.

Bài 2: Cho parabol (P): y = \(-x^2+4x-2\) và đường thẳng d: y = \(-2x+3m\). Tìm các giá trị của m để d và (P) có một giao điểm nằm trên đường thẳng y = -2

  bởi Lê Minh Bảo Bảo 21/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Bài 1: Vì đường thẳng y=3 cắt đồ thị hàm số \(y=ax^2+bx+c\) tại hai điểm có hoành độ là -1 và 3 nên ta có: \(\left\{{}\begin{matrix}a.\left(-1\right)^2+b.\left(-1\right)+c=3\\a.3^2+b.3+c=3\end{matrix}\right.\)(1)

    \(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=3\\9a+3b+c=3\end{matrix}\right.\)

    lại có hàm số đạt GTNN bằng -1 nên ta có: \(\dfrac{-\Delta}{4a}=-1\Leftrightarrow b^2-4ac=4a\)(2)

    Từ (1) (2) ta có hệ pt: \(\left\{{}\begin{matrix}a-b+c=3\\9a+3b+c=3\\b^2=4ac+4a\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}8a+4b=0\\a-b+c=3\\b^2=4ac+4a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-b+c=3\\b^2+2bc+2b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-b+c=3\\b\left(b+2c+2\right)=0\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-b+c=3\\b=0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}b=-2a\\a-b+c=3\\b+2c=-2\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=0\\c=3\end{matrix}\right.\)(vô lý) hoặc \(\left\{{}\begin{matrix}a=-\dfrac{b}{2}\\-\dfrac{3}{2}b+c=3\\\dfrac{1}{2}b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=0\end{matrix}\right.\)

    Bài 2: Hoành độ giao điểm của (P) và (d) là nghiệm của pt:

    \(-x^2+4x-2=-2x+3m\)\(\Leftrightarrow x^2-6x+3m+2=0\)

    \(\Rightarrow\Delta'=\left(-3\right)^2-3m-2=7-3m\)

    Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow7-3m\ge0\Leftrightarrow\dfrac{7}{3}\ge m\)

    Để (d) và (P) có giao điểm nằm trên đt y=-2 thì tồn tại giá trị x và m là nghiệm của hệ pt: \(\left\{{}\begin{matrix}-x^2+4x-2=-2\\-2x+3m=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x=0\\2x-3m=2\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\m=-\dfrac{2}{3}\end{matrix}\right.\)(thỏa mãn) hoặc \(\left\{{}\begin{matrix}x=4\\m=2\end{matrix}\right.\)(thỏa mãn)

      bởi nguyễn phương 21/09/2018
    Like (1) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF