OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Thực hiện tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = {2^{|x|}}\) trên đoạn \(\displaystyle \left[ { - 1;1} \right]\) .

  bởi Bao Nhi 02/10/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Trên đoạn \(\displaystyle \left[ { - 1;1} \right]\), ta có \(y = {2^{|x|}} = \left\{ {\begin{array}{*{20}{c}}{{2^x},khi\,\,\,x \in {\rm{[}}0;1]}\\{{2^{ - x}},khi\,\,\,x \in {\rm{[}} - 1;0]}\end{array}} \right.\)

    +) Trên đoạn \(\displaystyle \left[ {0;1} \right]\), hàm số \(y=2^x\) có \(2 > 1\) nên hàm đồng biến.

    +) Trên đoạn \(\displaystyle \left[ { - 1;0} \right]\) hàm số \(y=2^{-x} = \frac{1}{{{2^x}}} = {\left( {\frac{1}{2}} \right)^x}\) có \(0 < \frac{1}{2} < 1\) nên hàm nghịch biến.

    +) Lại có \(y( - 1) = {2^{ - ( - 1)}} = {2^1} = 2,\)\(y(0) = {2^0} = 1,y(1) = {2^1} = 2\).

    Vậy  \(\mathop {\max }\limits_{{\rm{[}} - 1;1]} y = y(1) = y( - 1) = 2,\)\(\mathop {\min }\limits_{{\rm{[}} - 1;1]} y = y(0) = 1\).

      bởi Bảo Anh 03/10/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF