OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Thực hiện tìm cực trị của hàm số cho sau: \(y = \sin 2x\)

  bởi Bánh Mì 19/09/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(y = \sin 2x\)               

    Hàm số có chu kỳ \(T = \pi \)

    Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:

    \(y' = 2\cos 2x\)

    \(y' = 0 \Leftrightarrow \cos 2x = 0 \) \(\Leftrightarrow 2x = \frac{\pi }{2} + k\pi  \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\)

    Mà \( x\in [0;\pi] \Rightarrow \left[ \matrix{
    x = {\pi \over 4} \hfill \cr 
    x = {{3\pi } \over 4} \hfill \cr} \right.\)

    Lại có: \(y'' =  - 4\sin 2x\);

    \(y''\left( {\dfrac{\pi }{4}} \right) =  - 4\sin \left( {2.\dfrac{\pi }{4}} \right) =  - 4 < 0\) nên hàm số đạt cực đại tại \(x = \dfrac{\pi }{4}\) và \({y_{CD}} = y({\pi  \over 4}) = 1\)

    \(y''\left( {\dfrac{3\pi }{4}} \right) =  - 4\sin \left( {2.\dfrac{3\pi }{4}} \right) =  4 > 0\) nên hàm số đạt cực tiểu tại \(x = \dfrac{3\pi }{4}\) và \({y_{CT}} = y({{3\pi } \over 4}) =  - 1\)

    Vậy trên R ta có:

    \({y_{CĐ}} = y({\pi  \over 4} + k\pi ) = 1;\)

    \({y_{CT}} = y({{3\pi } \over 4} + k\pi ) =  - 1,k \in Z\)

      bởi can tu 20/09/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF