OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Sự tăng trưởng của một loại vi khuẩn tuân theo công thức \(S = A.{e^{rt}}\), trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 100 con và sau 5 giờ có 300 con. Hỏi sau 10 giờ có bao nhiêu con vi khuẩn? Sau bao lâu số lượng vi khuẩn ban đầu sẽ tăng gấp đôi?

Sự tăng trưởng của một loại vi khuẩn tuân theo công thức \(S = A.{e^{rt}}\), trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu là 100 con và sau 5 giờ có 300 con. Hỏi sau 10 giờ có bao nhiêu con vi khuẩn? Sau bao lâu số lượng vi khuẩn ban đầu sẽ tăng gấp đôi?

  bởi Mai Linh 01/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Sau 5 giờ, từ công thức S=A.ert ta có:

    300 = 100.e5r => 3=e5r

    \( \Leftrightarrow 5r = \ln 3 \Leftrightarrow r = \frac{{\ln 3}}{5}\)

    Sau 10 giờ số lượng vi khuẩn là

    \(\begin{array}{l}S = A{e^{rt}} = 100{e^{\frac{{\ln 3}}{5}.10}}\\ \Leftrightarrow S = 100{e^{2\ln 3}} = 100{\left( {{e^{\ln 3}}} \right)^2}\\ = {100.3^2} = 100.9 = 900\end{array}\)

    Khi số lượng vi khuẩn tăng lên gấp đôi tức là có \(100.2 = 200\) con

    Ta có:

    \(\begin{array}{l}200 = 100{e^{\frac{{\ln 3}}{5}t}}\\ \Leftrightarrow 2 = {e^{\frac{{\ln 3}}{5}t}}\\ \Leftrightarrow \frac{{\ln 3}}{5}t = \ln 2\\ \Leftrightarrow t = \ln 2:\frac{{\ln 3}}{5}\\ \Leftrightarrow t = \frac{{5\ln 2}}{{\ln 3}}\end{array}\)

    \( \approx 3,15\) giờ = 3 giờ 9 phút.

      bởi Nguyen Nhan 02/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF