OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

So sánh căn bậc 3 của 10 và căn bậc 5 của 20

So sánh các cặp số :

a) \(\sqrt[3]{10}\) và \(\sqrt[5]{20}\)

b) \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}\) và 1

c) \(\left(\frac{1}{8}\right)^{\pi}\)  và \(\left(\frac{1}{8}\right)^{3.14}\)

d) \(\left(\frac{1}{\pi}\right)^{1.4}\) và \(\pi^{-\sqrt{2}}\)

  bởi ngọc trang 26/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)

    b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)

    c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)

    d)  Vì \(\frac{1}{\pi}<1\)  và \(1,4<\sqrt{2}\)  nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)

     
      bởi Nguyen Thi Chung 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF