OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Số giá trị nguyên của tham số \(m\) để phương trình \(x + 2 = m{e^x}\) có hai nghiệm thực phân biệt bằng

A. \(2.\)                                 B. \(3.\)

C. \(0.\)                                 D. \(1.\)

  bởi Anh Trần 08/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có \(x + 2 = m{e^x} \Leftrightarrow m = \dfrac{{x + 2}}{{{e^x}}}\,\,\,\,\,\left( 1 \right)\).

    Xét hàm số \(y = \dfrac{{x + 2}}{{{e^x}}};\) hàm số có tập xác định là \(\mathbb{R}\), \(y' = \dfrac{{ - x - 1}}{{{e^x}}}\).

    \(y' = 0 \Leftrightarrow x =  - 1\).

    Bảng biến thiên:

    Vậy \(\left( 1 \right)\) có hai nghiệm thực phân biệt \( \Leftrightarrow 0 < m < e\).

    Do đó chỉ có \(2\) số nguyên \(m\) thỏa mãn.

    Đáp án A

      bởi Choco Choco 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF