OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x + 1} \over {x - 1}}\).

Khảo sát sự biến thiên và vẽ đồ thị hàm số: \(y = {{x + 1} \over {x - 1}}\). 

  bởi thanh duy 02/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • TXĐ: \(D =\mathbb R\backslash \left\{ 1 \right\}\)
     \(\mathop {\lim }\limits_{x \to {1^ + }} y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) nên \(x = 1\) là tiệm cận đứng.

    Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty } y = 1\) nên \(y = 1\) là tiệm cận ngang.

    \(y = {{1.(-1)-1.1} \over {{{\left( {x - 1} \right)}^2}}} = {{ - 2} \over {{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\)

    Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)

    Hàm số không có cực trị.
    Đồ thị hàm số cắt trục tung tại điểm \((0;-1)\) cắt trục hoành tại điểm \((-1;0)\)
    Đồ thị nhận giao điểm hai tiệm cận \(I(1;1)\) làm tâm đối xứng.

      bởi Tuấn Huy 02/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF