OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Khảo sát sự biến thiên và vẽ đồ thị hàm số \(y=\frac{x-1}{x+2}\

Làm toát mồ hôi mà vẫn không ra, giúp em vs!

Khảo sát sự biến thiên và vẽ đồ thị hàm số \(y=\frac{x-1}{x+2}\)

  bởi Nguyễn Lệ Diễm 08/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Tập xác định: D = R\{-2}
    Sự biến thiên:

    Chiều biến thiên: \(y'=\frac{3}{(x+2)^2};y'>0,\forall x\in D\)
    Hàm số nghịch biến trên từng khoảng \((-\infty ;-2);(-2;+\infty )\)

    Giới hạn và tiệm cận:
    \(\lim_{x\rightarrow -\infty }y=\lim_{x\rightarrow +\infty }y=1\Rightarrow\) Tiệm cận ngang: y =1.
    \(\lim_{x\rightarrow -2^- }y=+\infty ;\lim_{x\rightarrow -2^+ }y=-\infty \Rightarrow\) Tiệm cận đứng x =- 2
    Bảng biến thiên:

    Đồ thị:
    + Giao điểm với các trục:

    \(Oy:x=0\Rightarrow y=-\frac{1}{2};\left ( 0;\frac{1}{2} \right )\)
    và \(Oy:y=0\Leftrightarrow x-1=0\Leftrightarrow x=1:(1;0)\)
    Đồ thị cắt các trục tọa độ tại \(\left ( 0;-\frac{1}{2} \right );(1;0)\)

      bởi Lan Anh 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF