OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Hãy tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong trường hợp: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z = - 3t'}\end{array}} \right.\)

Hãy tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong trường hợp: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\) 

  bởi Trịnh Lan Trinh 24/05/2021
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hai đường thẳng \(\Delta \) và \(\Delta '\) có phương trình là:

    \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\)

    Phương trình mặt phẳng \((\alpha )\) chứa \(\Delta \) và song song với \(\Delta '\) là 9x + 5y – 2z – 22 = 0

    Lấy điểm M’(0; 2; 0) trên \(\Delta '\).

    Ta có \(d(\Delta ,\Delta ') = d(M',(\alpha ))\)\( = \dfrac{{|5.(2) - 22|}}{{\sqrt {81 + 25 + 4} }} = \dfrac{{12}}{{\sqrt {110} }}\).

    Vậy khoảng cách giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\dfrac{{12}}{{\sqrt {110} }}\).

      bởi Mai Vàng 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF