OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Hãy tìm tất cả các giá trị của m để hàm số \(y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\) đồng biến trên đoạn \(\left[ {0;\dfrac{\pi }{2}} \right].\)

A. \(m \le 9\).   

B. \(m \ge 1\).  

C. \(m \ge 9\).  

D. \(m \le 1\).

  bởi Cam Ngan 10/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Xét hàm số\(y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\) trên \(\left[ {0;\dfrac{\pi }{2}} \right]\).

    Ta có:

    \(\begin{array}{*{20}{l}}{y = {{\cos }^3}x - 3{{\sin }^2}x - m\cos x - 1}\\{y = {{\cos }^3}x - 3\left( {1 - {{\cos }^2}x} \right) - m\cos x - 1}\\{y = {{\cos }^3}x + 3{{\cos }^2}x - m\cos x - 4}\end{array}\) 

    Đặt \(t = \cos x\), với \(x \in \left[ {0;\dfrac{\pi }{2}} \right]\) thì hàm số \(t\left( x \right) = \cos x\) nghịch biến trên \(\left[ {0;\dfrac{\pi }{2}} \right]\) và \(t \in \left[ {0;1} \right]\).

    Khi đó bài toán trở thành tìm\(m\) để hàm số \(y = {t^3} + 3{t^2} - mt - 4\) nghịch biến trên \(\left[ {0;1} \right]\).

    \(\begin{array}{*{20}{l}}{ \Rightarrow y' = 3{t^2} + 6t - m \le 0{\mkern 1mu} {\mkern 1mu} \forall t \in \left[ {0;1} \right]}\\{ \Leftrightarrow m \ge 3{t^2} + 6t{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \forall t \in \left[ {0;1} \right]{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)}\end{array}\)

    Xét hàm số \(f\left( t \right) = 3{t^2} + 6t\) trên \(\left[ {0;1} \right]\) ta có: \(f'\left( t \right) = 6t + 6 = 0 \Leftrightarrow t = {\rm{\;}} - 1.\)

    Bảng biến thiên:

     

     

    Dựa vào bảng biến thiên ta có bất đẳng thức (1) xảy ra \( \Leftrightarrow m \ge \mathop {\max }\limits_{\left[ {0;1} \right]} f\left( t \right) \Leftrightarrow m \ge 9.\).

    Chọn C.

      bởi ngọc trang 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF