OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Hãy tìm số phức \(z\), biết rằng: \(\overline z = {z^3}\)

  bởi Mai Vi 17/04/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có \(z\overline z  = {\left| z \right|^2}\) nên từ \(\overline z  = {z^3} \Rightarrow {\left| z \right|^2} = {z^4}\)

    Đặt \(z  = a+ bi\), suy ra:

    \(\begin{array}{l}
    {a^2} + {b^2} = {\left( {a + bi} \right)^4} = {\left[ {{{\left( {a + bi} \right)}^2}} \right]^2}\\
    \Leftrightarrow {a^2} + {b^2} = {\left( {{a^2} - {b^2} + 2abi} \right)^2}\\
    \Leftrightarrow {a^2} + {b^2} = {a^4} + {b^4} + {\left( {2abi} \right)^2}\\
    - 2{a^2}{b^2} - 2{b^2}.2abi + 2{a^2}.2abi\\
    \Leftrightarrow {a^2} + {b^2} = {a^4} + {b^4} - 4{a^2}{b^2}\\
    - 2{a^2}{b^2} - 4a{b^3}bi + 4{a^3}bi\\
    \Leftrightarrow {a^2} + {b^2} = {a^4} + {b^4} - 6{a^2}{b^2}\\
    + 4{a^2}{b^2}\left( {{a^2} - {b^2}} \right)i\\
    \Leftrightarrow {a^4} + {b^4} - 6{a^2}{b^2} - {a^2} - {b^2}\\
    + 4{a^2}{b^2}\left( {{a^2} - {b^2}} \right)i = 0\\
    \Leftrightarrow \left\{ \begin{array}{l}
    4{a^2}{b^2}\left( {{a^2} - {b^2}} \right) = 0\,\,\left( 1 \right)\\
    {a^4} + {b^4} - 6{a^2}{b^2} - {a^2} - {b^2} = 0\,\,\left( 2 \right)
    \end{array} \right.
    \end{array}\)

    \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}
    {a^2} = 0\\
    {b^2} = 0\\
    {a^2} - {b^2} = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    a = 0\\
    b = 0\\
    {a^2} = {b^2}
    \end{array} \right.\)

    +) Nếu \(a = 0\) thay vào \(\left( 2 \right)\) được \({b^4} - {b^2} = 0 \Leftrightarrow {b^2}\left( {{b^2} - 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{b^2} = 0\\{b^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}b = 0\\b =  \pm 1\end{array} \right.\)

    \( \Rightarrow \left[ \begin{array}{l}z = 0\\z = i\\z =  - i\end{array} \right.\)

    +) Nếu \(b = 0\) thay vào \(\left( 2 \right)\) ta được \({a^4} - {a^2} = 0 \Leftrightarrow {a^2}\left( {{a^2} - 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{a^2} = 0\\{a^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 0\\a =  \pm 1\end{array} \right.\)

    \( \Rightarrow \left[ \begin{array}{l}z = 0\\z =  \pm 1\end{array} \right.\)

    +) Nếu \({a^2} = {b^2}\) thay vào \(\left( 2 \right)\) ta được:

    \({a^4} + {a^4} - 6{a^4} - {a^2} - {a^2} = 0\)\( \Leftrightarrow  - 4{a^4} - 2{a^2} = 0\)  \( \Leftrightarrow  - 2{a^2}\left( {2{a^2} + 1} \right) = 0\)\( \Leftrightarrow {a^2} = 0 \Leftrightarrow a = 0\)

    (vì \(2{a^2} + 1 > 0,\forall a\) )

    \( \Rightarrow b = a = 0 \Rightarrow z = 0\)

    Vậy các số phức cần tìm là \(z = 0,z =  \pm 1,z =  \pm i\).

      bởi Thùy Nguyễn 18/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF