OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy lập phương trình mặt phẳng \((\alpha )\) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng \((\beta )\) : x + 2y – z = 0 .

Hãy lập phương trình mặt phẳng \((\alpha )\) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng \((\beta )\) : x + 2y – z = 0 . 

  bởi hi hi 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Mặt phẳng \((\alpha )\) đi qua hai điểm A, B và vuông góc với mặt phẳng \((\beta )\):

    x + 2y – z = 0.

    Vậy hai vecto có giá song song hoặc nằm trên \((\alpha )\) là \(\overrightarrow {AB}  = (2;2;1)\)  và \(\overrightarrow {{n_\beta }}  = (1;2; - 1)\)

    Suy ra \((\alpha )\) có vecto pháp tuyến là:  \(\overrightarrow {{n_\alpha }} =\left[ {\overrightarrow {AB} ,\overrightarrow {{n_\beta  }} } \right] = ( - 4;3;2)\)

    Vậy phương trình của \((\alpha )\) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0.

      bởi Lê Tường Vy 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF