OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy chứng minh rằng hai số phức liên hợp \(z\) và \(\overline z \) là hai nghiệm của một phương trình bậc hai với hệ số thực.

Hãy chứng minh rằng hai số phức liên hợp \(z\) và \(\overline z \) là hai nghiệm của một phương trình bậc hai với hệ số thực. 

  bởi Tuyet Anh 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Nếu \(z = a + bi\) thì \(\overline z  = a - bi\)

    \(z + \overline z  =a+bi+a-bi= 2a \in \mathbb{R};\)

    \(z.\overline z   = \left( {a + bi} \right)\left( {a - bi} \right) \) \(= {a^2} - {\left( {bi} \right)^2}= {a^2} + {b^2} \in \mathbb{R}\)

    Khi đó \(z\) và \(\overline z \) là hai nghiệm của phương trình \(\left( {x - z} \right)\left( {x - \overline z } \right) = 0\)\( \Leftrightarrow {x^2} - \left( {z + \overline z } \right)x + z.\bar z = 0\)\( \Leftrightarrow {x^2} - 2ax + {a^2} + {b^2} = 0\).

      bởi Tieu Dong 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF