OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải bát phương trình sau: \({\log _{{1 \over 5}}}\left( {{x^2} - 6x + 18} \right) \) \(+ 2{\log _5}\left( {x - 4} \right) < 0.\)

Giải bát phương trình sau: \({\log _{{1 \over 5}}}\left( {{x^2} - 6x + 18} \right) \) \(+ 2{\log _5}\left( {x - 4} \right) < 0.\) 

  bởi Tra xanh 02/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Điều kiện: 

    \(\left\{ \matrix{
    {x^2} - 6x + 18 > 0 \hfill \cr 
    x - 4 > 0 \hfill \cr} \right. \Leftrightarrow x > 4\)

    \(\eqalign{
    & {\log _{{1 \over 5}}}\left( {{x^2} - 6x + 18} \right) + 2{\log _5}\left( {x - 4} \right) < 0\cr&\Leftrightarrow  - {\log _5}\left( {{x^2} - 6x + 18} \right) + {\log _5}{\left( {x - 4} \right)^2} < 0\cr& \Leftrightarrow {\log _5}{\left( {x - 4} \right)^2} < {\log _5}\left( {{x^2} - 6x + 18} \right) \cr 
    &  \Leftrightarrow {\left( {x - 4} \right)^2} < {x^2} - 6x + 18\cr& \Leftrightarrow {x^2} - 8x + 16 < {x^2} - 6x + 18\cr& \Leftrightarrow  - 2x < 2\cr& \Leftrightarrow x >- 1 \cr} \)

    Kết hợp điều kiện ta có \(x > 4\)

    Vậy \(S = \left( {4; + \infty } \right)\) 

      bởi Hoa Hong 02/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF