OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\) bằng bao nhiêu?

A. \( - 39\)                   

B. \( - 40\)               

C. \( - 36\)                     

D. \( - 4\)

  bởi Dương Minh Tuấn 06/05/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Xét hàm số \(f\left( x \right) = {x^4} - 12{x^2} - 4\) trên đoạn \(\left[ {0;9} \right]\), ta có:

    \(f'\left( x \right) = 4{x^3} - 24x = 4x\left( {{x^2} - 6} \right);f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \in \left[ {0;9} \right]}\\{x = \sqrt 6 {\rm{\;}} \in \left[ {0;9} \right]}\\{x = {\rm{\;}} - \sqrt 6 {\rm{\;}} \notin \left[ {0;9} \right]}\end{array}} \right.\)

    Và \(f\left( 0 \right) = {\rm{\;}} - 4{\mkern 1mu} {\mkern 1mu} ,{\mkern 1mu} {\mkern 1mu} f\left( {\sqrt 6 } \right) = {\rm{\;}} - 40{\mkern 1mu} {\mkern 1mu} ;{\mkern 1mu} {\mkern 1mu} f\left( 9 \right) = 5585\).

    Vậy \(\mathop {\min }\limits_{\left[ {0;9} \right]} f\left( x \right) = \left( {\sqrt 6 } \right) = {\rm{\;}} - 40\).

    Chọn B.

      bởi Bùi Anh Tuấn 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF