OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Đường cong ở hình bên dưới là đồ thị của hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c;\) với \(x\) là biến số thực; \(a,b,c\) là ba hằng số thực, \(a \ne 0.\) Gọi \(k\) là số nghiệm thực của phương trình \(f\left( x \right) = 1.\) Mệnh đề nào dưới đây đúng ?

A. \(abc < 0\)và \(k = 2.\)

B. \(abc > 0\)và \(k = 3.\)

C. \(abc < 0\)và \(k = 0.\)

D. \(abc > 0\)và \(k = 2.\)  

  bởi Tay Thu 08/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) có tập xác định là \(\mathbb{R}\).

    Từ đồ thị \(\left( C \right)\) của hàm số đã cho suy ra \(a > 0\) và \(\left( C \right)\) cắt \(Oy\) tại điểm \(\left( {0;c} \right)\) với \(c < 0\).

    \(y' = 4a{x^3} + 2bx &  = 2x\left( {2a{x^2} + b} \right)\); \(y' = 0 \Leftrightarrow x = 0\) hoặc \({x^2} = \dfrac{{ - b}}{{2a}}\); từ đồ thị \(\left( C \right)\) suy ra \(\dfrac{{ - b}}{{2a}} > 0 \Rightarrow b < 0\) . 

    Vậy \(abc > 0\).

    Đường thẳng \(y = 1\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt nên phương trình \(f\left( x \right) = 1\) có hai nghiệm thực phân biệt.

    Đáp án D

      bởi Long lanh 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF