OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Đồ thị \(\left( C \right)\) của hàm số sau \(y = \dfrac{{2x - 5}}{{x + 1}}\) cắt trục \(Oy\) tại điểm \(M.\) Tiếp tuyến của đồ thị \(\left( C \right)\) tại \(M\) có phương trình là

A.\(y = 7x + 5.\)         B. \(y =  - 7x - 5.\)

C. \(y = 7x - 5.\)         D. \(y =  - 7x + 5.\)

  bởi can chu 08/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Giao điểm của \(\left( C \right)\) với trục tung là \(M\left( {0;y} \right)\)

    Suy ra \(y = \dfrac{{ - 2.0 - 5}}{{0 + 1}} =  - 5 \Rightarrow M\left( {0; - 5} \right)\)

    Ta có \(y' = \dfrac{7}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y\left( 0 \right) = 7\)

    Phương trình tiếp tuyến cần tìm là:

    \(\begin{array}{l}y = y'\left( 0 \right)\left( {x - 0} \right) + \left( { - 5} \right)\\ \Leftrightarrow y = 7x - 5\end{array}\)

    Chọn C.

      bởi Phan Quân 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF