OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cm pt x^3+2x^2+3x+4=0 và x^3-8x^2+23x-26=0 có đúng 1 nghiệm

Cho 2 phương trình \(x^3+2x^2+3x+4=0\)\(x^3-8x^2+23x-26=0\).CMR mỗi phương trình trên có đúng 1 nghiệm,tính tổng 2 nghiệm đó

  bởi Nguyễn Thị Lưu 26/09/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Định lý: điều kiện đủ để phương trình \(f(x)=0\) có ít nhất một nghiệm trên khoảng \((a;b)\)\(f(x)\) liên tục trên \([a,b]\)\(f(a)f(b)<0\).

    Bây giờ xét \(\left\{\begin{matrix} f(x)=x^3+2x^2+3x+4\\ g(x)=x^3-8x^2+23x-26\end{matrix}\right.\)

    Ta thấy hai hàm trên liên tục trên \(R\). Hơn nữa:\(\left\{\begin{matrix} f(-2)f(0)<0\\ g(3)g(4)<0\end{matrix}\right.\)

    Do đó \(f(x) =0\) có ít nhất một nghiệm \(x_1\in (-2,0)\)\(g(x)=0\) có ít nhất một nghiệm \(x_2\in (3,4)\)

    Lại có \(f'(x)=3x^2+4x+3>0\forall x\in\mathbb{R}\)\(g'(x)=3x^2-16x+23>0\forall x\in\mathbb{R}\) nên hai hàm luôn đồng biến .

    Do đó, cả hai PT đều có duy nhất một nghiệm.

    Vì nó chỉ có duy nhất một nghiệm nên có thể tính trực tiếp (hoặc sử dụng phương pháp Cardano ta suy ra tổng hai nghiệm của chúng là \(x_1+x_2=2\)

      bởi ngọc đoan 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF