OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh u.v < =u^p/p+v^q/q

Cho p,q > 0 : \(\dfrac{1}{p}+\dfrac{1}{q}=1;u,v\ge0\)

CHứng minh rằng \(u.v\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)

Cho f,g : \(\left[a,b\right]\rightarrow R\) Liên tục và p,q ở câu (a) ta luôn có :
\(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}\)

  bởi Co Nan 13/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (2)

  • a) Xét f(u) = \(\dfrac{u^p}{p}+\dfrac{v^q}{q}-uv,u\ge0\)

    ( Xem v > 0 vì v = 0 : BĐT luôn đúng )

    f '(u) = up-1 - v = 0 \(\Leftrightarrow\) up-1 = v \(\Leftrightarrow\) u = \(v^{\dfrac{q}{p}}\)

    Vẽ bảng biến thiên ( tự vẽ )

    Vậy \(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)

    b)* Nếu \(\int\limits^b_a\left|f\left(x\right)\right|^pdx=0\) hay \(\int\limits^b_a\left|g\left(x\right)\right|^qdx=0\)thì \(f\equiv0\)hay \(g\equiv0\) BĐT luôn đúng

    Xét \(\int\limits^b_a\left|f\left(x\right)\right|^pdx>0\)\(\int\limits^b_a\left|g\left(x\right)\right|^qdx>0\)

    Áp dụng BĐT câu (a) :

    Với \(\left\{{}\begin{matrix}u=\dfrac{\left|f\left(x\right)\right|}{\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}}>0\\v=\dfrac{\left|g\left(x\right)\right|}{\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}}>0\end{matrix}\right.\)

    \(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\left(1\right)\)

    Lấy tích phân từ a \(\rightarrow\) b 2 vế BĐT (1) ta được :

    \(\int\limits^b_auvdx\le\dfrac{1}{p}+\dfrac{1}{q}=1\)

    Vậy : \(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)^p\right|dx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)^q\right|dx\right)^{\dfrac{1}{q}}\)

    \(\Rightarrow\)(Đpcm )

      bởi Nguyễn Minh Anh 13/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF