OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh: \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} < - 2;\)

Chứng minh: \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} <  - 2;\) 

  bởi Nhật Nam 03/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \({\log _{{1 \over 2}}}3 = {1 \over {{{\log }_3}{1 \over 2}}}\)và\({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} + \left| {{{\log }_3}{1 \over 2}} \right| > 2\)

    ( theo công thức đổi cơ số của lôgarit,bất đẳng thức Cô- si và \({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} \ne \left| {{{\log }_3}{1 \over 2}} \right|)\)

    Mặt khác, \({\log _3}{1 \over 2} < 0\) nên \( - {1 \over {{{\log }_3}{1 \over 2}}} - {\log _3}{1 \over 2} > 2\), hay \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} <  - 2\)

      bởi Hoàng My 04/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF