OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh 5k^4+10k^3+10k^2+5k chia hết cho 30

chứng minh 5k^4+10k^3+10k^2+5k chia hết cho 30 K thuộc N*

  bởi A La 25/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • bài này hơi rắc rối ; bạn nên sử dụng phương pháp qui nạp toán học 2 lần

    với \(k=1\) ta có : \(5k^4+10k^3+10k^2+5k=30⋮3\)

    giả sữ : \(k=n\) thì ta có : \(5n^4+10n^3+10n^2+5n⋮30\)

    khi đó với \(k=n+1\) thì ta có :

    \(5k^4+10k^3+10k^3+5k=5\left(n+1\right)^4+10\left(n+1\right)^3+10\left(n+1\right)^2+5\left(n+1\right)\)

    \(=5\left(n^4+4n^3+6n^2+4n+1\right)+10\left(n^3+3n^2+3n+1\right)+10\left(n^2+2n+1\right)+5\left(n+1\right)\)

    \(=5n^4+10n^3+10n^2+5n+20n^3+60n^2+70n+30\)

    giờ ta chỉ cần chứng minh \(20n^3+60n^2+70n+30⋮30\) là được

    với \(n=1\) ta có : \(20n^3+60n^2+70n+30=180⋮3\)

    giả sữ : \(n=a\) thì ta có : \(20a^2+60a^2+70a+30⋮3\)

    khi đó với \(n=a+1\) thì ta có :

    \(20\left(n\right)^3+60n^2+70n+30=20\left(a+1\right)^3+60\left(a+1\right)^2+70\left(a+1\right)+30\)

    \(=20\left(a^3+3a^2+3a+1\right)+60\left(a^2+2a+1\right)+70\left(a+1\right)+30\)

    \(=20a^3+60a^2+70a+30+60a^2+180a+150⋮3\)

    \(\Rightarrow20n^3+60n^2+70n+30⋮30\)

    \(\Rightarrow5k^4+10k^3+10k^2+5k⋮30\)

    vậy \(5k^4+10k^3+10k^2+5k\) chia hết cho \(30\) với \(k\in N^{\circledast}\) (đpcm)

      bởi Hồng Nhung 25/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF