OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho phương trình \({z^2} - mz + 2m - 1 = 0\) trong đó \(m\) là tham số phức. Tính giá trị của \(m\) để phương trình có hai nghiệm \({z_1},{z_2}\) thỏa mãn \(z_1^2 + z_2^2 = - 10\)

  bởi Nguyễn Thị Thúy 09/05/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Áp dụng định lí Vi – et cho phương trình \({z^2} - mz + 2m - 1 = 0\) trong tập số phức ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} =  - \frac{b}{a} = m\\{z_1}{z_2} = \frac{c}{a} = 2m - 1\end{array} \right.\)

    Khi đó: \(z_1^2 + z_2^2 =  - 10 \Leftrightarrow {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}{z_2} =  - 10\) \( \Leftrightarrow {m^2} - 2\left( {2m - 1} \right) =  - 10 \Leftrightarrow {m^2} - 4m + 12 = 0 \Leftrightarrow m = 2 \pm 2\sqrt 2 i\)

      bởi A La 09/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF