OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho một cấp số nhân hữu hạn có công bội \(q = - 3\), số hạng thứ ba bằng \(27\) và số hạng cuối bằng \(1594323\). Hỏi cấp số nhân đó có bao nhiêu số hạng?

A. \(11\)                                      B. \(13\)

C. \(15\)                                      D. \(14\)

  bởi Nguyễn Vũ Khúc 09/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có: \({u_3} = {u_1}.{q^2}\)\( \Rightarrow 27 = {u_1}.{\left( { - 3} \right)^2}\) \( \Leftrightarrow {u_1} = 3\).

    Giả sử số hạng thứ \(n\) là \({u_n} = 1594323\), khi đó ta có:

    \(3.{\left( { - 3} \right)^{n - 1}} = 1594323\) \( \Leftrightarrow {\left( { - 3} \right)^{n - 1}} = 531441\) \( \Leftrightarrow n - 1 = 12\) \( \Leftrightarrow n = 13\). 

    Vậy \(1594323\) là số hạng thứ 13 hay cấp số nhân trên có 13 số hạng.

    Chọn B.

      bởi thu phương 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF