OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc \(60^o\). Tính thể tích hình chóp là bằng?

A. \(\dfrac{{{a^3}\sqrt 3 }}{8}\)           

B. \(\dfrac{{{a^3}\sqrt 3 }}{{12}}\)   

C. \(\dfrac{{{a^3}}}{4}\)                 

D. \(\dfrac{{{a^3}\sqrt 3 }}{4}\)  

  bởi Bo bo 06/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi H là trung điểm của BC

    (SBC) hợp với đáy (ABC) một góc 60o

    \( \Rightarrow \widehat {SHA} = {60^0}\)

    Ta có: \(AH = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 3 }}{2}\)

    + \(\tan {60^0} = \dfrac{{SA}}{{AH}} \Rightarrow SA = \dfrac{{3a}}{2}\)

    Khi đó: \(V = \dfrac{1}{3}.SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{3a}}{2}.\dfrac{1}{2}.a.a.\sin {60^0} = \dfrac{{{a^3}\sqrt 3 }}{8}\)

    Chọn đáp án A.

      bởi Hoàng My 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF