OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm là \(f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}}\) . Khẳng định nào dưới đây đúng ?

A. Hàm số đồng biến trên các khoảng \(\left( {10;11} \right)\) và \(\left( {12; + \infty } \right)\)

B. Hàm số có ba điểm cực trị

C. Hàm số đồng biến trên khoảng \(\left( {10;12} \right)\)

D. Hàm số đạt cực đại tại \(x = 2\) và đạt cực tiểu tại \(x = 1\) và \(x = 3.\)

  bởi thủy tiên 11/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có : \(f'\left( x \right) = {\rm{\;}} - \left( {x - 10} \right){\left( {x - 11} \right)^2}{\left( {x - 12} \right)^{2019}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 10}\\{x = 11}\\{x = 12}\end{array}} \right.\)

    BBT :

     

    Từ BBT ta thấy hàm số đồng biến trên khoảng \(\left( {10;12} \right)\) nên C đúng.

    Hàm số có 2 điểm cực trị.

    Chọn C.

      bởi hi hi 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF