OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;\,1} \right]\) và thỏa mãn \(f\left( 0 \right) = 0\). Biết \(\int\limits_0^1 {{f^2}\left( x \right){\rm{d}}x = \dfrac{9}{2}} \) và \(\int\limits_0^1 {f'\left( x \right){\rm{cos}}\dfrac{{\pi x}}{2}{\rm{d}}x = \dfrac{{3\pi }}{4}} \). Tính tích phân \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \)

  bởi thi trang 06/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \(\left\{ \begin{array}{l}u = \cos \dfrac{{\pi x}}{2}\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du =  - \dfrac{\pi }{2}\sin \dfrac{{\pi x}}{2}dx\\v = f\left( x \right)\end{array} \right.\)

    \(\begin{array}{l} \Rightarrow \int\limits_0^1 {f'\left( x \right){\rm{cos}}\dfrac{{\pi x}}{2}{\rm{d}}x}  = \left. {\cos \dfrac{{\pi x}}{2}f\left( x \right)} \right|_0^1 + \dfrac{\pi }{2}\int\limits_0^1 {f\left( x \right)\sin \dfrac{{\pi x}}{2}dx} \\ = f\left( 1 \right).\cos \dfrac{\pi }{2} - f\left( 0 \right)\cos 0 + \dfrac{\pi }{2}\int\limits_0^1 {f\left( x \right)\sin \dfrac{{\pi x}}{2}dx} \\ = \dfrac{\pi }{2}\int\limits_0^1 {f\left( x \right)\sin \dfrac{{\pi x}}{2}dx}  = \dfrac{{3\pi }}{4} \Rightarrow \int\limits_0^1 {f\left( x \right)\sin \dfrac{{\pi x}}{2}dx}  = \dfrac{3}{2}\end{array}\)

    Xét tích phân \(\int\limits_0^1 {{{\left[ {f\left( x \right) + k\sin \dfrac{{\pi x}}{2}} \right]}^2}dx}  = 0\)

    \(\begin{array}{l} \Leftrightarrow \int\limits_0^1 {\left[ {{f^2}\left( x \right) + 2kf\left( x \right)\sin \dfrac{{\pi x}}{2} + {k^2}{{\sin }^2}\dfrac{{\pi x}}{2}} \right]dx}  = 0\\ \Leftrightarrow \int\limits_0^1 {{f^2}\left( x \right)dx}  + 2k\int\limits_0^1 {f\left( x \right)\sin \dfrac{{\pi x}}{2}dx}  + {k^2}\int\limits_0^1 {{{\sin }^2}\dfrac{{\pi x}}{2}dx}  = 0\\ \Leftrightarrow \dfrac{9}{2} + 2k\dfrac{3}{2} + \dfrac{1}{2}{k^2} = 0 \Leftrightarrow k =  - 3\end{array}\)

    Khi đó ta có \(\int\limits_0^1 {{{\left[ {f\left( x \right) - 3\sin \dfrac{{\pi x}}{2}} \right]}^2}dx}  = 0 \Leftrightarrow f\left( x \right) - 3\sin \dfrac{{\pi x}}{2} = 0 \Leftrightarrow f\left( x \right) = 3\sin \dfrac{{\pi x}}{2}\)

    Vậy \(\int\limits_0^1 {f\left( x \right){\rm{d}}x}  = 3\int\limits_0^1 {{\rm{sin}}\dfrac{{\pi x}}{2}{\rm{d}}x}  = \left. { - 3\dfrac{{\cos \dfrac{{\pi x}}{2}}}{{\dfrac{\pi }{2}}}} \right|_0^1 = \left. {\dfrac{{ - 6}}{\pi }\cos \dfrac{{\pi x}}{2}} \right|_0^1 =  - \dfrac{6}{\pi }\left( {\cos \dfrac{\pi }{2} - \cos 0} \right) = \dfrac{6}{\pi }\)

      bởi Hoang Vu 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF