OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số \(y = \dfrac{1}{2}{x^3} - \dfrac{3}{2}{x^2} + 2\,\,\left( C \right)\). Xét hai điểm \(A\left( {a;{y_A}} \right),\,\,B\left( {b,\,\,{y_B}} \right)\) phân biệt của đồ thị \(\left( C \right)\) mà tiếp tuyến tại \(A\) và \(B\) song song. Biết rằng đường thẳng \(AB\) đi qua \(D\left( {5;3} \right)\). Tìm phương trình của \(AB\)

  bởi hành thư 07/05/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(y = \dfrac{1}{2}{x^3} - \dfrac{3}{2}{x^2} + 2\,\,\left( C \right) \Rightarrow y' = \dfrac{3}{2}{x^2} - 3x\)

    Do tiếp tuyến tại A và B song song nên \( \Rightarrow y'\left( a \right) = y'\left( b \right)\,\,\left( {a \ne b} \right)\)

    \(\begin{array}{l} \Leftrightarrow \dfrac{3}{2}{a^2} - 3a = \dfrac{3}{2}{b^2} - 3b \Leftrightarrow {a^2} - {b^2} - 2a + 2b = 0\\ \Leftrightarrow \left( {a - b} \right)\left( {a + b - 2} \right) = 0 \Leftrightarrow a + b = 2\,\,\left( {Do\,\,a \ne b} \right)\end{array}\)

    Ta có: \(A\left( {a;\dfrac{1}{2}{a^3} - \dfrac{3}{2}{a^2} + 2} \right);\,\,B\left( {b;\dfrac{1}{2}{b^3} - \dfrac{3}{2}{b^2} + 2} \right)\),  với \(a + b = 2\).

    Ta có:

    \(\dfrac{{\dfrac{1}{2}{a^3} - \dfrac{3}{2}{a^2} + 2 + \dfrac{1}{2}{b^3} - \dfrac{3}{2}{b^2} + 2}}{2} = \dfrac{{\dfrac{1}{2}{{\left( {a + b} \right)}^3} - \dfrac{1}{2}3ab\left( {a + b} \right) - \dfrac{3}{2}{{\left( {a + b} \right)}^2} + \dfrac{3}{2}.2ab + 4}}{2} = 1\)

    \( \Rightarrow I\left( {1;1} \right)\) là trung điểm của \(AB\).

    Đường thẳng AB đi qua \(D\left( {5;3} \right)\) và \(I\left( {1;1} \right)\) có phương trình là:

    \(\dfrac{{x - 1}}{{5 - 1}} = \dfrac{{y - 1}}{{3 - 1}} \Leftrightarrow x - 1 = 2y - 2 \Leftrightarrow x - 2y + 1 = 0\)

      bởi Nguyễn Lệ Diễm 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF