OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số sau: \(y = {{mx - 1} \over {x - m}},m \ne \pm 1\) Gọi \(\left( {{H_m}} \right)\) là đồ thị của hàm số đã cho. Chứng minh rằng với mọi \(m \ne \pm 1\), đường cong \(\left( {{H_m}} \right)\) luôn đi qua hai điểm cố định A và B.

  bởi truc lam 26/10/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đồ thị \(\left( {{H_m}} \right)\) của hàm số đã cho đi qua điểm \(\left( {{x_0},{y_0}} \right)\) khi và chỉ khi

    \({y_0} = {{m{x_0} - 1} \over {{x_0} - m}}\)

    Với mọi \(m \ne  \pm 1\) , đường cong \(\left( {{H_m}} \right)\) luôn đi qua điểm \(\left( {{x_0},{y_0}} \right)\) khi và chỉ khi phương trình trên (với ẩn số m) nghiệm đúng với mọi \(m \ne  \pm 1\).

    Với mọi \(m \ne  \pm 1\), phương trình trên tương đương với phương trình

    \(\eqalign{& {y_0}\left( {{x_0} - m} \right) = m{x_0} - 1  \cr &  \Leftrightarrow \left( {{x_0} + {y_0}} \right)m = {x_0}{y_0} + 1 \cr} \)

    Phương trình nghiệm đúng với mọi \(m \ne  \pm 1\) khi và chỉ khi

    \(\left\{ \matrix{{x_0} + {y_0} = 0 \hfill \cr {x_0}{y_0} + 1 = 0 \hfill \cr}  \right.\)

    \( \Leftrightarrow \left\{ \matrix{{y_0} =  - {x_0} \hfill \cr - x_0^2 + 1 = 0 \hfill \cr}  \right.\)

    Hệ phương trình tương đương với mọi \(m \ne  \pm 1\), đường cong \(\left( {{H_m}} \right)\) luôn đi qua hai điểm cố định A(-1;1) và B(1;-1).

      bởi Ho Ngoc Ha 26/10/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF