OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số sau \(y = \dfrac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}\). Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ { - 6;\,6} \right]\) của tham số \(m\) để đồ thị hàm số có bốn đường tiệm cận?

A. \(12\).

B. \(9\).

C. \(8\).

D. \(11\).

  bởi Nguyễn Thanh Thảo 08/07/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có \(y = \dfrac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}}\)

    \(\mathop {\lim }\limits_{x \to  \pm \infty } \,f\left( x \right) = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{x - 3}}{{{x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m}} = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{\dfrac{x}{{{x^3}}} - \dfrac{3}{{{x^3}}}}}{{1 - 3m\dfrac{{{x^2}}}{{{x^3}}} + \left( {2{m^2} + 1} \right)\dfrac{x}{{{x^3}}} - \dfrac{m}{{{x^3}}}}} = 0\) nên \(y = 0\) là tiệm cận ngang của đồ thị hàm số.

    Vậy để đồ thị hàm số có 4 đường tiệm cận thì đồ thị hàm số phải có 3 đường tiệm cận đứng.

    Hay phương trình \({x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m = 0\,\,\left( 1 \right)\) có ba nghiệm phân biệt \(x \ne 3.\)

    Ta có \({x^3} - 3m{x^2} + \left( {2{m^2} + 1} \right)x - m = 0 \Leftrightarrow \left( {x - m} \right)\left( {{x^2} - 2mx + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = m\\{x^2} - 2mx + 1 = 0\,\left( * \right)\end{array} \right.\)

    Để phương trình (1) có ba nghiệm phân biệt khác 3 thì \(m \ne 3\) và phương trình (*) có hai nghiệm phân biệt khác \(m\) và khác \(3.\)

    Do đó \(\left\{ \begin{array}{l}\Delta ' = {m^2} - 1 > 0\\{3^2} - 2.m.3 + 1 \ne 0\\{m^2} - 2{m^2} + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m <  - 1\\m > 1\end{array} \right.\\m \ne \dfrac{5}{3}\\m \ne  - 1\\m \ne 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m <  - 1\\m > 1\end{array} \right.\\m \ne \dfrac{5}{3}\end{array} \right.\)

    Kết hợp điều kiện \(\left\{ \begin{array}{l}m \ne 3\\ - 6 \le m \le 6\end{array} \right. \Rightarrow m \in \left\{ { - 6; - 5; - 4; - 3; - 2;2;4;5;6} \right\}\)

    Vậy có 9 giá trị của m thỏa mãn điều kiện

    Chọn B.

      bởi Vu Thy 08/07/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF