OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số sau \(y = \dfrac{{mx - 1}}{{2x + 1}}\) (với \(m\) là tham số) thỏa mãn điều kiện \(\mathop {\max }\limits_{\left[ {1;2} \right]} y = 3\). Khẳng định nào dưới đây đúng?

A. \(7 < m < 10\)                    

B. \(4 < m < 7\)                      

C. \(0 < m < 3\)                      

D. \(10 < m < 13\)

  bởi Mai Hoa 08/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • TXĐ:  \(D = \mathbb{R}\backslash \left\{ { - \dfrac{1}{2}} \right\}\). Do đó, hàm số đã cho xác định và liên tục trên đoạn \(\left[ {1;2} \right]\)

    Ta có:\(y = \dfrac{{mx - 1}}{{2x + 1}}\)

    \( \Rightarrow y' = \dfrac{{m\left( {2x + 1} \right) - 2\left( {mx - 1} \right)}}{{{{\left( {2x + 1} \right)}^2}}}\) \( = \dfrac{{2mx + m - 2mx + 2}}{{{{\left( {2x + 1} \right)}^2}}} = \dfrac{{m + 2}}{{{{\left( {2x + 1} \right)}^2}}}\)

    Nếu \(m + 2 > 0 \Leftrightarrow m >  - 2\) thì \(y' > 0,\forall x \in D\) hay hàm số đã cho đồng biến trên đoạn \(\left[ {1;2} \right]\). Do đó,

    \(\mathop {\max }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right) \Leftrightarrow f\left( 2 \right) = 3 \Leftrightarrow \dfrac{{2m - 1}}{{2.2 + 1}} = 3 \Leftrightarrow m = 8\) (thỏa mãn)

    Nếu \(m + 2 < 0 \Leftrightarrow m <  - 2\) thì \(y' < 0,\forall x \in D\) hay hàm số đã cho nghịch biến trên đoạn \(\left[ {1;2} \right]\). Do đó,

    \(\mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 1 \right) \Leftrightarrow f\left( 1 \right) = 3 \Leftrightarrow \dfrac{{m - 1}}{{2.1 + 1}} = 3 \Leftrightarrow m = 10\) (Không thỏa mãn \(m <  - 2\)) 

    Vậy \(m = 8\) hay \(7 < m < 10\)

    Đáp án  A

      bởi trang lan 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF