OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số sau đây: \(y = \dfrac{{2x + 1}}{{x + 1}}\). Mệnh đề đúng là

A. Hàm số nghịch biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).             

B. Hàm số đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), nghịch biến trên \(\left( { - 1;1} \right)\).

C. Hàm số đồng biến trên \(\mathbb{R}\).

D. Hàm số đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

  bởi Hoang Viet 05/05/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có: \(y' = \dfrac{1}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \ne  - 1\) nên hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

    Chọn D.

      bởi cuc trang 05/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF