OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hai đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = - 2t}\\{z = 7 + t}\end{array}} \right.\) và d1: \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t'}\\{y = - 2}\\{z = - 11 - t'}\end{array}} \right.\). Hãy lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.

Cho hai đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y =  - 2t}\\{z = 7 + t}\end{array}} \right.\)  và  d1:  \(\left\{ {\begin{array}{*{20}{c}}{x =  - 2 + t'}\\{y =  - 2}\\{z =  - 11 - t'}\end{array}} \right.\). Hãy lập phương trình mặt phẳng (P) sao cho khoảng cách từ d và d1 đến (P) là bằng nhau.

  bởi Hoang Viet 24/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Hình 3.32

    Đường thẳng d đi qua M(6; 0 ;7) có vecto chỉ phương \(\overrightarrow a (0; - 2;1)\).

    Đường thẳng d1 đi qua N(-2; -2; -11) có vecto chỉ phương \(\overrightarrow b (1;0; - 1)\).

    Do d và d1 chéo nhau nên (P) là mặt phẳng trung trực của đoạn vuông góc chung AB của d, d1 và song song với d và d1.

    Để tìm tọa độ của A, B ta làm như sau:

    Lấy điểm A(6; - 2t; 7 + t) thuộc d, B( -2 + t’; -2 ; -11 – t’) thuộc d1. Khi đó: \(\overrightarrow {AB}  = ( - 8 + t'; - 2 + 2t; - 18 - t - t')\)

    Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB}  \bot \overrightarrow a }\\{\overrightarrow {AB}  \bot \overrightarrow b }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow a  = 0}\\{\overrightarrow {AB} .\overrightarrow b  = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2( - 2 + 2t) + ( - 18 - t - t') = 0}\\{ - 8 + t' - ( - 18 - t - t') = 0}\end{array}} \right.\)

    \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 5t - t' - 14 = 0}\\{t + 2t' + 10 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t =  - 2}\\{t' =  - 4}\end{array}} \right.\)

    Suy ra  A(6; 4; 5), B(-6; -2; -7)

    Trung điểm của AB là I(0; 1; -1)

    Ta có: \(\overrightarrow {AB}  = ( - 12; - 6; - 12)\). Chọn \(\overrightarrow {{n_P}}  = (2;1;2)\)

    Phương trình của (P) là: 2x + (y – 1) + 2(z + 1) = 0  hay 2x + y  +2z + 1 = 0.

      bởi Tuấn Tú 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF