OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho biết số nghiệm của phương trình \(\sin 5x + \sqrt 3 \cos 5x = 2\sin 7x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) là?

A. 4.    

B. 1.    

C. 3.    

D. 2.

  bởi Tieu Dong 07/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có

    \(\begin{array}{l}\,\,\,\,\,\,\sin 5x + \sqrt 3 \cos 5x = 2\sin 7x\\ \Leftrightarrow \dfrac{1}{2}\sin 5x + \dfrac{{\sqrt 3 }}{2}\cos 5x = \sin 7x\\ \Leftrightarrow \sin 5x\cos \dfrac{\pi }{3} + \cos 5x\sin \dfrac{\pi }{3} = \sin 7x\\ \Leftrightarrow \sin \left( {5x + \dfrac{\pi }{3}} \right) = \sin 7x\\ \Leftrightarrow \left[ \begin{array}{l}7x = 5x + \dfrac{\pi }{3} + k2\pi \\7x =  - 5x + \dfrac{{2\pi }}{3} + m2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6} + k\pi \\x = \dfrac{\pi }{{18}} + \dfrac{{m\pi }}{6}\end{array} \right.\,\,\left( {k,\,\,m \in \mathbb{Z}} \right)\end{array}\)

    Mà \(x \in \left( {0;\dfrac{\pi }{2}} \right)\)\( \Rightarrow \left[ \begin{array}{l}0 < \dfrac{\pi }{6} + k\pi  < \dfrac{\pi }{2}\\0 < \dfrac{\pi }{{18}} + \dfrac{{m\pi }}{6} < \dfrac{\pi }{2}\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - \dfrac{1}{6} < k < \dfrac{1}{3}\\ - \dfrac{1}{3} < m < \dfrac{8}{3}\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}k = 0\\m \in \left\{ {0;1;2} \right\}\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{6}\\x \in \left\{ {\dfrac{\pi }{{18}};\dfrac{{2\pi }}{9};\dfrac{{7\pi }}{{18}}} \right\}\end{array} \right.\)

    Vậy phương trình đã cho có 4 nghiệm thỏa mãn.

    Chọn A.

      bởi An Nhiên 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF